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Introduction

Recent decades have witnessed greater knowledge about can-
cer-associated thrombosis (CAT). Nevertheless, highly relevant
issues concerning the causes, dynamic effects, and variable
prognosis of thrombosis have yet to be fully clarified.1 These
patients’ “life stories” are often complex and their risk factors
interweave time-dependent stochastic events (e.g., admis-
sions, toxicities, surgeries, etc.) and reciprocal interactions
between clinical and biological factors.2,3 This complexity
poses a challenge for the statistical analysis of CAT.4

The two main aims in clinical research into CAT are to
understand how it affects prognosis and to identify the most
significant predictors. However, these analyses entail some
specific difficulties. First, the Cox model, widely used for
analyzing survival data, assumes proportional hazards (the
hazard ratio [HR] must be constant with time),5 yet this
assumption is often not fulfilled in series with longer follow-
up times.6 This is relevant, because if we are to glean
information about long-term survivors, wemust understand
that the prognostic impact of thrombosis is attenuated over
time.7 Nevertheless, for all intents and purposes, the specific
literature all but fails to reflect this information.8 In light of
this, accelerated failure time (AFT) models, a kind of
parametric model that assumes that the effect of a covariate
is to accelerate or to decelerate the course of the disease,
might be more suitable in dynamic clinical settings.

Moreover, most experts consider that thrombotic risk
varies over the natural evolution of cancer; consequently,
some key predictors do not exert a constant effect.9 To model
cumulative incidence of thrombosis, the Fine-Gray subdistri-

bution hazard regression (FGR) is commonly used, although it
fails to capture how the predictors’ behavior changes with
time.4,10,11 Consequently, since the proportional hazards
assumption may, again, not hold and the interest lies in
absolute effects, flexible competing risks models (sensitive
to competing events, yet flexible enough to deal with time-
varying dynamics of covariate effects) are needed.12,13

Second, CAT is a time-dependent variable. More often than
not, thrombosis does not occur at baseline, but during the
course of the disease.14 If thrombosis is evaluated as a fixed
variable, an error known as “immortal time bias” emerges,
whichcontinues tobecommon in the literature.15,16Multistate
models are one of the most appealing solutions, as their
architecture makes it possible to demarcate periods with and
without thrombosis, as well as to address other common
problems (e.g., competing risks).17 Posch et al have demon-
strated that multistatemodels are useful for integrally dissect-
ing the process of CAT.18 More recently, multistate models
based onAFTmodels have beenproposed as a flexible solution
to incorporate these time-varying effects.19 Despite its poten-
tial benefit, thismethodologyhas scantlybeenexplored inCAT.

For a proof of concept, our group hypothesized that a
registry of advanced gastric cancer (AGC)might be especially
useful to test these methods, since the cumulative incidence
of venous thromboembolic events (VTE) ranges between 9
and 24%,20,21 having a marked prognostic effect.8,22 The
AGAMENONAGC registry has guided us previously in several
aspects of this disease.23–29 Here, we have set out to assess
whether flexible modeling strategies are superior to non-
flexible methods for correctly capturing and interpreting the
most important features of CAT.
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Abstract Research into cancer-associated thrombosis (CAT) entails managing dynamic data that
pose an analytical challenge. Thus, methods that assume proportional hazards to
investigate prognosis entail a risk of misinterpreting or overlooking key traits or time-
varying effects. We examined the AGAMENON registry, which collects data from 2,129
patients with advanced gastric cancer. An accelerated failure time (AFT) multistate
model and flexible competing risks regression were used to scrutinize the time-varying
effect of CAT, as well as to estimate how covariates dynamically predict cumulative
incidence. The AFT model revealed that thrombosis shortened progression-free
survival and overall survival with adjusted time ratios of 0.72 and 0.56, respectively.
Nevertheless, its prognostic effect was nonproportional and disappeared over time if
the subject managed to survive long enough. CAT that occurred later had a more
pronounced prognostic effect. In the flexible competing risks model, multiple cova-
riates were seen to have significant time-varying effects on the cumulative incidence of
CAT (Khorana score, secondary thromboprophylaxis, high tumor burden, and cisplatin-
containing regimen), whereas other predictors exerted a constant effect (signet ring
cells and primary thromboprophylaxis). The model that assumes proportional hazards
was incapable of capturing the effect of these covariates and predicted the cumulative
incidence in a biased way. This study evinces that flexible and multistate models are a
useful and innovative method to describe the dynamic effect of variables associated
with CAT and should be more widely used.
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Methods

Patients and Study Design
Participants are from the AGAMENON AGC registry in which
32 Spanish hospitals and 1 Chilean center participated. Its
design, characteristics, and quality of the information have
been reported previously.23–29 The evaluation of thrombotic
risk was a prespecified aim. Data are managed electronically
via a Web site (www.agamenonstudy.com) that controls for
lost data, inconsistencies, and errors in real time, and double-
checks the study’s selected endpoints (events, thrombosis,
and dates), with telephone and online monitoring (P.J.F.).

Eligibility criteria include being> 18 years of age, with a
histologically confirmed diagnosis of adenocarcinoma of the
stomach, gastroesophageal junction, or distal esophagus. All
the tumors must present metastasis or be locally advanced
and unresectable, and subjects must have been treated with
at least one cycle of polychemotherapy, with regimens
deemed acceptable by guidelines.

Themaineventof interest is theappearanceof incidental or
symptomatic CAT during first-line chemotherapy (superficial
thrombophlebitis was ruled out). Diagnosis must have been
made bymeans of imaging techniques (computerized tomog-
raphy [CT] initially indicated to evaluate tumor response,
Doppler ultrasound, CT pulmonary angiography, etc., as per
each center’s clinical practice).

Other endpoints were overall survival (OS) and progres-
sion-free survival (PFS) defined as the survival times
between treatment initiation and tumor progression or all-
cause mortality, censoring patients lost to follow-up, venous
thrombotic recurrence, and bleeding. ►Supplementary

Material A (available in the online version) presents the full
list of variables and definitions used as CAT predictors or
survival endpoints.

The objective of the present study is to evaluate whether
fully parametric multistate survival models and flexible
competing risk regressions are capable of providing useful
information regarding CAT.

The study was approved by a multicenter research ethics
committee and by the Spanish Agency for Medicines and
Medical Devices (AEMPS). All patients still alive at the time of
data collection provided signed, informed consent.

Multistate Models
Multistate models are useful for depicting complex event
history data. It is a statistical framework in which the events
and their connections are named “states” and “transitions,”
respectively. States without transitions, such as demise, are
known as absorbing states, whereas the rest are considered
transitory states. The simplest multistate models include
competing risks analysis (the presence of more than one
absorbing state) and the illness-death model (defined as the
presence of a transitory state, such as CAT, and an absorbing
state).30 Thus, the causes of thrombogenesis and the effect of
CAT can be modeled simultaneously. The so-called Markov
property implies that the future course depends on the
current state, but not on the previous history. In CAT and
cancer studies, an alternative must be considered according

towhich the hazard of a transition (e.g., toward the endpoint
“death”) would go on to depend on the time it took for CAT to
occur. This extension has been named the state-arrival
extended semi-Markov31 and is particularly attractive in
hemostasis to assess whether the effect of early CAT is
equivalent to that of late thrombosis. The appearance of
intermediate events determines the possibility of using two
different timescales, from onset or from CAT. Given that
thrombosis and demise are a function of time from the onset
of cancer, a “clock forward” timescale is used, in which time
flows from the beginning and never stops moving for-
ward.17,31 The “clock reset” formulation, from the time of
thrombosis, can likewise be contemplated in this stratum.
The multistate model adopted in this study is illustrated
in ►Supplementary Fig. S1 (available in the online version).
Finally, the time-dependent effect of VTE on OS cannot be
disregarded32; a parametric AFT model has been used that
assumes that the effect of covariates either accelerates or
decelerates the course of the disease and does not require the
hazards to be proportional.19 The most intuitive way of
expressing the coefficients of the AFT model is exponenti-
ated (time ratios [TRs]); thus, the regression coefficient of a
binary predictor such as CAT equal to log(0.5) means that the
median OS (mOS) is halved in the presence of the thrombotic
event. Key characteristics of the models used have been
summarized in ►Table 1.

Statistics
A fully parametric AFT model has been implemented to
estimate the effect of VTE on prognosis.19 This formulation
allows both time-dependent variables and time-varying
effects to be included into the framework of a multistate
model.19,33 AFT models from several distribution families
incorporating covariates were fitted to model time to event
(PFS and OS). The Akaike information criterion and the
Bayesian information criterionwere used to comparemodels
(►Supplementary Material C, available in the online ver-
sion). The log-logistic distribution was then selected, given
that it was the one that best suited the data. No data-driven
method, such as univariate screening or stepwise regres-
sions, was applied to select eligible predictors.34 VTE was
entered as a time-dependent covariate. Landmark analysis
was used to evaluate the impact of VTE on survival.35

The Aalen–Johansen estimator was then applied to obtain
the cumulative incidence of CAT without covariates. The
cumulative incidence function of thrombosis was modeled
by flexible competing risks regression (direct binomial
regression applying the cloglog link).12 This approach ena-
bles the covariate effects on the cumulative incidence curve
to be estimated in competing risk scenarios. The resulting
model allows some effects to be time-variant (dynamic) and
others to be constant over time. Two tests were performed to
evaluate whether the effects were significantly time-varying
(Kolmogorov–Smirnov and Cramer–von Mises tests).12 We
also applied FGR, as comparison. The analyseswere executed
with R version 3.5.1,36 including the mstate, timereg, and
flexsurv packages.12,37,38 The R code is reflected in
►SupplementaryMaterial B (available in the online version).
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Results

Database Description
The registry contained 2,129 patients at the time of analysis.
There were 211 thromboses during first-line chemotherapy
with a cumulative incidence at 3 and 6months of 5.7% (95%
confidence interval [CI], 4.8–6.7%) and 8.2% (95% CI, 7.1–9.5%),
respectively (►Supplementary Fig. S2, available in the online
version). These CAT events occurred after a median of 2.4
months (range, 0–23). Patients’ baseline characteristics are
recorded in ►Table 2. A history of thrombosis prior to first-
line chemotherapy was also reported in 133 patients (see time
distribution in►Supplementary Fig. S3, available in theonline
version). Detection was incidental in 46%. The most common
locations of thrombosis were lung (48%), lower limb (24%),
splanchnic (8%), and catheter (7%). Thromboses were treated

with low molecular weight heparin, at full (91%), low (5%), or
prophylactic dosages (3%), or with direct oral anticoagulants
(1%). The cumulative incidence of venous rethrombosis and
major bleeding at 6months was 4.4% (95% CI, 2.3–8.3%) and
5.7% (95% CI, 3.3–10.0%), respectively. In the complete cohort,
median PFS and mOS were 6.05 (95% CI, 5.82–6.31) and 10.4
(95% CI, 9.9–10.9) months, respectively. Thrombosis was the
direct cause of death in 15 cases.

Dynamic Effect of VTE
In the log-logistic AFT models, the development of CAT short-
ened PFS and OS with adjusted TR of 0.72 (95% CI, 0.49–1.06)
and 0.56 (95% CI, 0.43–0.74), respectively (►Table 3). The
formulation through HRs was not suitable, since the effect of
CAT faded over time (►Fig. 1 and ►Supplementary Fig. S4,
available in the online version). The log-logisticmodel showed

Table 1 Summary of the models’ key characteristics

Cox proportional
hazards models

Accelerated failure
time (AFT)

Fine–Gray
subdistribution
hazard model

Direct binomial
regression

Estimations of
the model

Adjusted HRs Adjusted TRs sHRs Cumulative subhazard
ratios

Interpretation of
the coefficients

- HR¼ 1 indicates no
association between
the covariate and the
cause-specific hazard
function

- HR> 1 means that an
increase in the value of
the covariate is
associated with a
greater hazard rate

- HR< 1 means that an
increase in the value of
the covariate is
associated with a
reduced hazard rate

- TR¼ 1 indicates no
association between
the covariate and
survival time

- TR> 1 means that an
increase in the value of
the covariate is
associated with longer
survival

- TR< 1 means that an
increase in the value of
the covariate is
associated with
shorter survival

- sHR¼ 1 indicates no
association between
the covariate and the
cumulative incidence
function

- sHR> 1 means that an
increase in the value of
the covariate increases
the risk

- sHR< 1 means the
opposite

In constant effect
variables, the interpre-
tation is identical to the
previous case. The
model adds a function
with a direct link on the
CIF for time-varying
covariates

Example of
interpretation for
a binary predictor

HR¼ 0.5, the rate of
events is half at any
given point in time in
the presence of the
variable

TR¼ 0.5, the median
time-to-event is halved
in the presence of the
predictor

The exact numerical
interpretation is not
direct

The exact numerical
interpretation is not
direct

Assumption of
proportional
hazards

Yes No Yes No

Possibility of
analyzing
dynamic variables

Dynamic variables, e.g.,
covariates that change
over time, can be
incorporated using
extensions of the Cox
model

Yes No Yes

Competing events Competing events can
be addressed in a Cox
model by fitting
cause-specific hazards
for each type of event

Not in its basic
formulation, although
extensions have been
reported that make it
possible to adapt the
analysis

Yes Yes

Time-dependent
variables

Yes Yes No No

Abbreviations: CIF, cumulative incidence function; HR, hazard ratio; sHRs, subdistribution hazard ratios; TR, time ratio.
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adequate goodness-of-fit (►Supplementary Fig. S5, available
in the online version). After adjusting for confounding factors,
CAT that took place later were seen to exert a more powerful
prognostic effect (TR 0.69 and 0.93 onprogression and demise,
respectively, for each month it took the thrombosis to occur).
Kaplan–Meier curves to represent the long-term effects of
early or late VTEs conditional on surviving at least 6months
are depicted in►Fig. 2. Median PFS andmOS from the time of
CAT were 1.21 (95% CI, 3.05–5.16) and 3.91months (95% CI,
3.05–5.16), respectively.

Flexible Modeling of VTE Predictors
It is clear in the flexible competing risks model that four
covariates (Khorana score, secondary prevention of venous
thromboembolism, high tumor burden, and cisplatin-contain-
ing regimen; see ►Fig. 3) have significant time-varying effects
(p< 0.05). As for the Khorana score, or the high tumor load, the
association with VTE is more intense at the beginning, but
rapidly abates after 2 to 3months of follow-up. In the case of
cisplatin, the effect is also early, with a cumulative late compo-
nent in individuals with chronic vascular disease aged � 60
years. For secondary thromboprophylaxis, there is an initial
increased riskof thrombotic recurrence,with subsequent, long-
term protection. In contrast, the significant predictors with a
constanteffectweresignet ringcells (cumulativesub-HR[csHR],
1.47; 95% CI, 1.06–2.05) and primary thromboprophylaxis
(csHR, 0.43; 95% CI, 0.18–0.99) (►Table 4). For comparison
sake, ►Supplementary Material D (available in the online
version) displays FGR, which assumes proportional hazards,
thereby verifying that it fails to detect the significant effect of
two of the four dynamic covariates (“cisplatin” and “secondary
thromboprophylaxis”). Finally, we compared the FGR predic-
tions with those of the dynamic model, by means of three
patient profiles (see ►Fig. 4 footnote). For each, predictions
have been stratified according to having received primary
thromboprophylaxis or not. ►Fig. 4A and B illustrate that
FGR underestimates the cumulative incidence in those profiles
in which there is a predominance of time-varying covariates
havinga lateeffect (e.g., cisplatin-containing regimens inelderly
patients with cardiovascular disease). In contrast, FGR over-
estimates thrombotic risk when dynamic covariates with an
early effect predominate (e.g., Khorana score, cisplatin, or high
tumor burden) (►Fig. 4C and D).

Discussion

In this study,wehave applied a flexiblemultistatemodel as an
innovative method38 to comprehensively dissect CAT predic-
tive factors and their influence on survival endpoints. This
work shows that mortality in an illness-deathmodel, inwhich
thrombosis represents a transient state, can depend on when
the eventoccurs, and that the time-dependent effect cannot be
overlooked, as doing so would fail to reflect the reality of its
impact. Furthermore, this methodology makes it possible to
explore the dynamic effects of variables, yielding additional
insights into cancer patients’ hypercoagulability.

Theuseofflexiblemodelingor time-to-eventanalysis isnot
yet routine in thefield of thrombosis, evenwith censored data

Table 2 Patients’ baseline characteristics

Characteristics All patients,
n¼ 2,135, %

Sex, male 1,511 (71)

Age, median (range) 64 (20–89)

Albumin,< 3.5 g/dL 510 (24)

ECOG-PS, � 2 278 (13)

Primary tumor site

Distal esophagus 164 (8)

Gastroesophageal junction 264 (12)

Stomach 1,707 (80)

Stage at diagnosis, metastatic 2,017 (94)

Surgery of primary tumor 615 (29)

Chemotherapy

Oxaliplatin 1,236 (58)

Anthracycline 454 (21)

Cisplatin 719 (34)

Docetaxel 266 (12)

Irinotecan 42 (2)

Other 132 (6)

Lauren classification, diffuse subtype 932 (44)

Histological grade

Grade 1 205 (10)

Grade 2 606 (28)

Grade 3 873 (41)

Not available 451 (21)

Presence of signet ring cells 638 (30)

Site of metastases

Liver 799 (37)

Peritoneum 926 (43)

Ascites 504 (24)

Bone 202 (9)

Lung 274 (19)

Prior use of anticoagulant for

No 1,779 (83)

Primary thromboprophylaxis 56 (3)

Atrial fibrillation 95 (4)

Thrombosis before cancer diagnosis 11 (1)

Thrombosis prior to beginning chemotherapy 48 (2)

Not available 135 (6.3)

History of tumor hemorrhage
(� 1month before the first-line chemotherapy)

No 1,351 (63)

Iron deficiency anemia without
evidence of bleeding

507 (24)

Tumor hemorrhage requiring transfusion 223 (10)

Tumor hemorrhage with history
of hemodynamic instability

36 (2)

Not available 18 (1)

Abbreviation: ECOG-PS, Eastern Cooperative Oncology Group perfor-
mance status.
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or variable follow-up times,39which can also cause competing
risks14,40,41 and immortal time bias16,42 to be missed. Insofar
as considering dynamic effects is concerned, few studies have
taken them into account explicitly32; others address
the problem indirectly, limiting analyses to arbitrarily early

periods,5,43 and most do not contemplate them at all.4 Thus,
studies coincide in that thrombosis has a constant, negative
effect when, in fact, the effect gradually disappears and is
residual after 5 to 6months.

To implement flexible modeling, we have turned to amulti-
statemodel that enables complicated life stories to beportrayed
with time-dependent events as transitions between states.31

Within this framework, the AFTmodel offers the advantages of
being robust and easy to interpret,38 as well as the ability to
incorporate nonproportional data, molding the basic shapes of
the hazard function.44 With this method, we have found that
CAT heralds progressive disease at first-line chemotherapy and
is associated with shortened mOS. Moreover, the state arrival-
extended semi-Markov model31 enabled the differential effect
of early or late CAT to be gauged, such that the later the
thrombosis, the more intense its effect. Despite the fact that
the studywas not specifically designed to evaluate the different
physiopathology of CAT based on time of occurrence, the data
point toward late thromboses being associated with hyperco-
agulabilityduetotumorprogressionandtheymighthaveworse
prognosis for this reason. On the other hand, early thromboses
are related to cisplatin’s early thrombogenic effect or with the
presence of an initial proinflammatory state, partially captured
by the Khorana score. This differential impact depending on its
time of appearance is consistent with a prior result observed by
Posch et al.18

The development of cost-effective thromboprophylaxis
strategies calls for the pursuit of reliable thrombotic risk
predictors, which is proving to be especially complex in
oncology patients.45 FGR is one of themost popular methods

Table 3 Accelerated failure time models (for PFS and OS)

PFS OS

Parameter Estimate (SE) TR (95% CI) Estimate (SE) TR (95% CI)

Shape 1.981 (0.037) NA 1.947 (0.039) NA

Scale 8.481 (0.712) NA 17.80 (15.015) NA

VTE (time-varying) –0.323 (0.195) 0.723 (0.493–1.061) –0.564 (0.138) 0.568 (0.433–0.745)

Neutrophil–lymphocyte ratio (continuous) –0.031 (0.004) 0.968 (0.959–0.978) –0.041 (0.005) 0.959 (0.949–0.968)

Cisplatin-containing regimen –0.030 (0.041) 0.969 (0.894–1.051) –0.015 (0.042) 0.984 (0.905–1.069)

Albumin,< 3.5 gr/dL 0.048 (0.047) 1.049 (0.955–1.152) 0.113 (0.049) 1.120 (1.016–1.234)

Ascites –0.140 (0.048) 0.868 (0.790–0.954) –0.148 (0.049) 0.862 (0.781–0.950)

Grade 1, vs. other –0.164 (0.068) 0.848 (0.742–0.969) –0.272 (0.070) 0.761 (0.662–0.873)

HER2 positive treated with trastuzumab 0.417 (0.055) 1.518 (1.362–1.691) –0.015 (0.057) 0.984 (0.905–1.069)

High tumor loada –0.263 (0.051) 0.768 (0.695–0.849) –0.315 (0.052) 0.729 (0.657–0.808)

Months to VTE –0.359 (0.155) 0.698 (0.514–0.947) –0.071 (0.052) 0.931 (0.840–1.031)

ECOG-PS, � 2 –0.372 (0.059) 0.688 (0.612–0.774) –0.501 (0.061) 0.605 (0.536–0.682)

Bone metastases –0.246 (0.065) 0.781 (0.687–0.889) –0.264 (0.067) 0.767 (0.672–0.877)

Tumor with signet ring cells –0.017 (0.044) 0.982 (0.899–1.072) –0.081 (0.046) 0.921 (0.842–1.009)

Abbreviations: CI, confidence interval; ECOG PS, Eastern Cooperative Oncology Group performance status scale; HER2, human epidermal growth
factor receptor 2; NA, not available; OS, overall survival; PFS, progression-free survival; SE, standard error; TR, time ratio; VTE, venous
thromboembolic disease.
Notes: Months to thrombosis are computed from the start of chemotherapy. Estimates are from log-logistic parametric models for PFS and OS; scale
and shape are the parameters of these models.
aHigh tumor burden was defined as the presence of � 3 metastatic sites or tumor occupying � 25% of the liver.
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Fig. 1 Time-varying effect of thrombosis on overall survival. AFT, accel-
erated failure time model; CI, confidence interval; VTE, venous thrombo-
embolism. Note: Hazard ratios are multivariable adjusted and estimated
from multistate model (AFT) with generalized gamma distribution or
through a hazard ratio formulation assuming proportional hazards.
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to model thrombotic risk in the presence of competing
events; however, this model is only capable of assuming a
constant effect of the predictors.10,46 Methods have been
developed recently to verify whether the assumption of
proportional hazards in this model is valid12; this is relevant,
given that thrombotic risk varies over the natural course of
cancer. Here, we have explored the existence of these hypo-
thetical time-varying effects by means of a direct binomial
model.12 The procedure has been able to reveal the complex-
ity of the relations between covariates, so that certain
important features of the model, such as the use of cisplatin
or secondary thromboprophylaxis, would have been misin-
terpreted or overlooked if they had beenmistakenlyassumed
to have static effects. On the other hand, the consideration of
a flexible competing risks model makes better calibrated
predictions possible. As example, the Khorana score is asso-
ciated with thrombotic risk, but the effect is essentially
restricted to early time points, rapidly disappearing as the
proinflammatory state that underpins the prediction
changes. This dynamic effect is not surprising because, in
fact, thrombotic events predicted by the Khorana score
occurred after a median of 2.5months.39 Being aware of
the time-varying effect of the Khorana score not only sheds
light on its nature, but also facilitates the possible correspon-
dence between its predictive categories and possible treat-
ment applications, since, based on the dynamic associations,

thromboprophylaxis could be prescribed early, late, or of
varying duration. The same concept has been seen to apply to
other covariates; for instance, tumor burden, which presum-
ably varies over the natural history of the cancer, impacting
survival. Similarly, it is interesting that cisplatin-containing
regimens have an early prothrombotic effect, which is
important to know so as to determine the best thrombopro-
phylaxis strategy. However, in contrast, it must be remem-
bered that using cisplatin in the elderly with prior vascular
comorbidity can have an accumulative component that must
be factored in. Likewise, in the case of secondary prophylaxis
(anticoagulant therapy for a thrombotic event before
chemotherapy), a biphasic effect has been observed, with
an initial risk of thrombosis, but a protective effect over the
longer term. Thus, these time profiles are projected in the
prediction of the cumulative incidence in a variable way. In
those patients with predominantly early-acting dynamic
predictors (e.g., the Khorana index), FGR overestimates
thrombotic risk. In contrast, it underestimates risk when
the predominant effects act later.

As regardsgeneralizability, one of thekeyaspects is that the
database used, theAGAMENON registry, contains a single kind
of tumor. However, we hypothesized that AGC was an ideal
model to conduct a simplified appraisal of some of the
complexities of paraneoplastic thrombosis, as proof of
concept. First, AGC is a relatively common neoplasm, with a

p

Fig. 2 Kaplan–Meier curves for conditional overall survival from 6-month landmark time, according to the appearance of thrombosis. Patients
have been stratified according to development of VTE before 3 months from treatment initiation (orange), between 3 and 6 months (blue), or
the nonoccurrence of thrombosis. The plot compares the long-term effects of VTE conditional on surviving at least 6 months. The landmark
approach has been used35; only patients surviving the first 6 months are included. VTE, venous thromboembolic events.
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high cumulative incidence of VTE (9–24%).20,21,47 Different
studies have reported that thrombosis has a negative prog-
nostic effect in AGC.8,22,47,48Moreover, several characteristics
simplify CATmodeling in this registry by attenuating themost
pronounced oscillations of thrombotic risk, such as the
relatively homogenous clinical course of AGC,30 similar
chemotherapy treatments, and limited histopathological vari-
eties. The thrombotic risk associated with signet ring cell
tumors, cisplatin-containingregimens,andhightumorburden
reported here is compatible with data from the litera-

ture.47,49–51 Thus, it is interesting that primary thrombopro-
phylaxis was associated with a reduction of thrombotic risk
(csHR, 0.43; 95% CI, 0.18–0.99; p¼ 0.049), similar to the
estimated magnitude for ambulatory cancer patients.52

Our study has several limitations that should be taken into
account. The most evident one is the registry’s retrospective
nature, with the limited accuracy this involves. Second, the
study of CAT was a predetermined aim of the registry, but
data collection focused on the events that took place during
first-line treatment. This may complicate the estimation of
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Supremum-test of significance, p = 0.0292
Kolmogorov-Smirnov test, p = 0.0010

Supremum-test of significance, p = 0.0008
Kolmogorov-Smirnov test, p = 0.0380

Supremum-test of significance, p = 0.0384
Kolmogorov-Smirnov test, p = 0.0294

Supremum-test of significance, p = 0.0042
Kolmogorov-Smirnov test, p = 0.0048

Supremum-test of significance, p = 0.2260
Kolmogorov-Smirnov test, p = 0.0204

Khorana score, ≥3b

High tumor loada

Fig. 3 Time-varying estimates for significant cancer-associated thrombosis (CAT) predictors. The estimates come from a flexible competing
risks model. The covariates described by a constant effect are shown in►Table 3. The observed estimates are shown by a black line; the blue lines
represent simulations of coefficients based on 500 resamples. The Kolmogorov–Smirnov test evaluates whether predictors have time-varying
effect, or the null hypothesis of proportional hazards can be accepted, while the supremum test of significance evaluates the association with
thrombotic risk. As a summary of the output, it is appreciated that Khorana, secondary thromboprophylaxis, high tumor burden, and cisplatin-
containing regimens have a clearly dynamic effect, not compatible with the Fine–Graymodel. aHigh tumor burden was defined as the presence of
�3 metastatic sites or tumor occupying �25% of the liver. bThe Khorana score was evaluated in a modified way, given that the registry considers
prechemotherapy platelet count �450� 109/L (þ1 point).

Table 4 Flexible competing risk regression (for thrombotic risk)

Covariate Coefficient csHR 95% CI p-Value

HER2-positive treated with trastuzumab 0.1550 1.17 0.77–1.78 0.4720

Tumor with signet ring cells 0.3850 1.47 1.06–2.05 0.0229

ECOG-PS, � 2 –0.0548 0.95 0.59–1.51 0.8190

Surgery on primary tumor (baseline) –0.0407 0.96 0.66–1.40 0.8310

Bone metastases 0.1520 1.16 0.72–1.88 0.5350

Use of anticoagulant therapya

Primary prophylaxis –0.8500 0.43 0.18–0.99 0.0490

� 60 years of age, with chronic cardiovascular diseaseb –0.0923 0.91 0.49–1.70 0.7720

Abbreviations: CI, confidence interval; csHR, cumulative subhazard ratio; HER2, human epidermal growth factor receptor 2; ECOG PS, Eastern
Cooperative Oncology Group performance status scale; VTE, venous thromboembolic disease.
Notes: The estimates come from a direct multivariate binomial model, with cloglog link. The parametric part (constant effects of the model) is
represented here, while the dynamic covariates of this model are shown in ►Fig. 2.
aPrimary thromboprophylaxis included those who received lowmolecular weight heparin for the prevention of VTE, but also those subjects whowere
anticoagulated for atrial fibrillation.

bChronic vascular disease includes chronic heart disease, peripheral vascular disease, and prior cerebrovascular disease.
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the individual effect of several covariates on thrombotic risk,
in light of the presence of thrombotic events prior to first-
line.

In conclusion, while the use of this method is still uncom-
mon in hemostasis, our data demonstrate that flexible
multistate analyses are promising analytical techniques
that should be extended to CAT studies, given that time-

dependent effects should not be discounted. This framework
would make it possible to perform adaptable, multiple
endpoint evaluations under the same umbrella, providing
contextually rich and realistic descriptions of interactions
and of these patients’ clinical evolution. The study supports
that the innovative integration of time-varying effects anal-
ysis within the theoretical framework of the multistate
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Fig. 4 Predictions of cumulative incidence function using a flexible competing risks model (A and C) or assuming proportional hazards (B and D)
for three patient profiles. The graphs represent three patients’ profiles, type 1 is an elderly person with chronic vascular comorbidity, who has a
tumor with signet ring cells, high tumor burden, treated with cisplatin, who presents a Khorana 3. Type 2 has none of these features. Type 3 is
similar to type 1, but has no vascular comorbidity. Predictions are stratified according to the use of primary thromboprophylaxis. Abbreviation:
VTE, venous thromboembolism.
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model can aid in selecting patients for thromboprophylactic
strategies.

What is known about this topic?

• The “life histories” of oncology patients with venous
thromboembolic events (VTE) are complex and most
developmultiple time-dependent risk factors that exert
a dynamic effect.

• Multistate models provide rich descriptive insights in
the process of cancer-associated VTE for both estima-
tion and prediction.

• Survival is growing in these patients, which implies
that the hazards of progression or death will not be
proportional to the effect of VTE in most studies.

What does this paper add?

• Time-varying effects should not be overlooked when
analyzing cancer-associated VTE, so flexible analyses,
within the framework of multistate models, are prom-
ising methods by which to assess cancer-associated
VTE.

• VTE shortens progression-free and overall survival,
depending on the effect of the time at which thrombosis
occurs.

• The multistate model makes it possible to globally
dissect the leading risk factors and the impact of VTE
in this population.
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Supplementary Material A Variables and endpoints

Variables Definitions

Definition of venous
thromboembolic
event (VTE)
endpoint

VTE included all thrombosis grade �2 according to the Common Terminology Criteria for Adverse
Events (CTCAE) classification v3.0 (56), regardless of whether the diagnosis was incidental or
symptomatic. This definition excludes superficial thrombophlebitis (grade 1). The registry recorded
only those thromboses that occurred during first-line chemotherapy.
The reason for choosing this target was the initial intention of developing a practical predictive model
for thrombotic risk in patients receiving ambulatory chemotherapy (e.g., in whom thromboprophylaxis
might be useful). There are no data available for thrombosis beyond first-line chemotherapy. Diagnosis
was made by means of objective imaging techniques (CT to assess antitumor response, Doppler
ultrasound, etc.) depending on each center’s clinical practice. Images were not subject to control by a
centralized radiology team.
Thrombotic events taking place prior to initiating chemotherapy were deemed history of prior VTE and
were analyzed as such separately. Successive thromboses were recorded in this registry as thrombotic
recurrences.

Overall survival
(OS) and
progression-free
survival (PFS)

OS and PFSwere defined as the time between treatment initiation (first-line chemotherapy for advanced
disease) and tumor progression or all-cause mortality, censoring patients lost to follow-up.

Selection of
variables

To create the predictive model, we contemplated 38 clinical and histopathological covariates with a
plausible relation with thrombotic risk in earlier studies. Among them are (1) patient-related factors,
such as demographic data, Eastern Cooperative Oncology Group Performance Status (ECOG-PS) scale,
number of chronic comorbidities according to the Charlson comorbidity index (57); laboratory
parameters including platelet or leukocyte count; modified Khorana score (dichotomizing thrombo-
cytosis at> 450,000/μL) and tumor-dependent characteristics (liver tumor load, number of metastatic
sites, location of metastasis, or histopathological traits).

High tumor load High tumor load was defined as the presence� 3metastatic sites or tumor occupying� 25% of the liver.

Khorana risk score This score was applied in a modified way insofar as the AGAMENON registry considered a pre-
chemotherapy platelet count� 450� 109/L (þ1 point). The remaining variables were scored as per the
model’s original description (Khorana et al, Blood 111:4902–4907, 2008): BMI� 35 kg/m2 (þ1),
prechemotherapy leukocyte count> 11� 109/L (þ1), hemoglobin level< 10 g/dL or using red blood
cells growth factors (þ1), gastric cancer (þ2). The original description defines the high-risk group as
those patients having � 3 points, with a VTE rate of 6.7–7% at 2.5 months.

ECOG PS The ECOG-PS is based on 5 grades, from 0 to 5, with 0 denoting perfect health and 5 indicating death.
The purpose of this scale is to assess how the disease affects patients’ daily living abilities.

Metastatic sites
(organs involved)

This variable is defined as the number of organs involved, not the number of metastases. Distant lymph
node regions (cervical, thoracic, abdominal, peritoneal, retroperitoneal, inguinal, etc.) should be
considered independently. The primary tumor is not counted.

Signet ring cell
adenocarcinoma

This definition was considered in this study if the tumor exhibited evidence of signet ring cells,
regardless of the percentage.

Histological
grade

Grade denotes the degree of differentiation of cancer cells that correlates with the aggressiveness of the
tumor. Pathologic grade classifies gastric cancer into 1 of 3 categories: well- (G1), moderately- (G2), or
poorly-differentiated (G3).

NLR ratio Neutrophil-to-lymphocyte ratio (NLR) was calculated by dividing the absolute neutrophil count by the
number of lymphocytes in a peripheral blood sample.

HER2-positive
treated tumor

HER2-positive tumor (defined as 3þ immunohistochemical staining (IHC) or 2þ IHC with fluorescence in
situ hybridization positivity) undergoing first-line trastuzumab with polychemotherapy.

Major bleeding Major bleeding is defined as episodes in a critical location (intracranial, intraspinal, intraocular,
retroperitoneal, or pericardial) associated with death; bleeding with hemoglobin levels of> 2 g/dL, or
bleeding requiring two units of packed red blood cells.

Venous
rethrombosis

Rethrombosis was defined as a second thrombotic event after proper anticoagulant treatment of the
previous event.

Primary
thromboprophylaxis

In this study, primary thromboprophylaxis included those who received low molecular weight heparin
for the prevention of VTE, but also those subjects who were anticoagulated for atrial fibrillation.

Secondary
thromboprophylaxis

In this study, secondary thromboprophylaxis is one in which patients with paraneoplastic thrombosis
initiated anticoagulant therapy before the first cycle of chemotherapy for advanced disease, and
maintained it during the course of treatment.
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Supplementary Material C Comparison of parametric models. The Akaike information criterion (AIC) and Bayesian information
criterion (BIC) are measures of goodness-of-fit. Lower values indicate a better fit.

Model AIC BIC

Log-logistic 12174.26 12254.39

Generalized F 12175.42 12266.99

Generalized gamma 12202.47 12288.32

Log-normal 12222.72 12302.84

Gamma 12296.59 12376.72

Weibull 12366.06 12446.18

Supplementary Material D Fine and Gray competing risk regression (for thrombotic risk)

Covariate Coefficient Robust SE 95% CI p-Value

HER2-positive treated with trastuzumab 0.1920 0.211 –0.2220 to 0.6060 0.3620

Tumor with signet ring cells 0.3980 0.167 0.0707 to 0.7250 0.0173

ECOG-PS, � 2 –0.0163 0.233 –0.4730 to 0.4400 0.9440

Khorana score, � 3 Ψ 0.3760 0.162 0.0585 to 0.6940 0.0201

Surgery on primary tumor (baseline) –0.0247 0.191 –0.3990 to 0.3500 0.8970

Bone metastases 0.1810 0.243 –0.2950 to 0.6570 0.4570

Use of anticoagulant therapy ‡
Primary prophylaxis
Secondary prophylaxis

–0.8910
0.4350

0.442
0.432

–1.7600 to –0.0247
–0.4120 to 1.2800

0.0437
0.3130

High tumor load § 0.3890 0.166 0.0636 to 0.7140 0.0193

Cisplatin-containing regimen 0.3090 0.175 –0.0340 to 0.6520 0.0775

� 60 years of age, with chronic cardiovascular disease� –0.0505 0.318 –0.6740 to 0.5730 0.8740

� 60 years of age, with chronic cardiovascular disease�

Cisplatin-containing regimen (interaction)
0.3170 0.456 –0.5770 to 1.2100 0.4870

ΨThe Khorana score was evaluated in a modified way since the registry considers the pre-chemotherapy platelet count �450� 109/L.
‡Primary thromboprophylaxis included those subjects who received low molecular weight heparin for the prevention of cancer-associated
thrombosis, but also subjects anticoagulated by atrial fibrillation. Secondary thromboprophylaxis included those individuals anticoagulated by
paraneoplastic thrombosis prior to either first-line chemotherapy or diagnosis.

�
Chronic cardiovascular disease includes chronic heart disease, peripheral vascular disease, and previous cerebrovascular disease.
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