
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=icnv20

Cancer Investigation

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/icnv20

Causal Considerations Can Inform the
Interpretation of Surprising Associations in
Medical Registries

Alberto Carmona-Bayonas, Paula Jiménez-Fonseca, Javier Gallego & Pavlos
Msaouel

To cite this article: Alberto Carmona-Bayonas, Paula Jiménez-Fonseca, Javier Gallego & Pavlos
Msaouel (2021): Causal Considerations Can Inform the Interpretation of Surprising Associations in
Medical Registries, Cancer Investigation, DOI: 10.1080/07357907.2021.1999971

To link to this article:  https://doi.org/10.1080/07357907.2021.1999971

View supplementary material 

Published online: 25 Nov 2021.

Submit your article to this journal 

Article views: 117

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=icnv20
https://www.tandfonline.com/loi/icnv20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/07357907.2021.1999971
https://doi.org/10.1080/07357907.2021.1999971
https://www.tandfonline.com/doi/suppl/10.1080/07357907.2021.1999971
https://www.tandfonline.com/doi/suppl/10.1080/07357907.2021.1999971
https://www.tandfonline.com/action/authorSubmission?journalCode=icnv20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=icnv20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/07357907.2021.1999971
https://www.tandfonline.com/doi/mlt/10.1080/07357907.2021.1999971
http://crossmark.crossref.org/dialog/?doi=10.1080/07357907.2021.1999971&domain=pdf&date_stamp=2021-11-25
http://crossmark.crossref.org/dialog/?doi=10.1080/07357907.2021.1999971&domain=pdf&date_stamp=2021-11-25
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ABSTRACT
An exploratory analysis of registry data from 2437 patients with advanced gastric cancer
revealed a surprising association between astrological birth signs and overall survival (OS)
with p¼ 0.01. After dichotomizing or changing the reference sign, p-values <0.05 were
observed for several birth signs following adjustments for multiple comparisons. Bayesian
models with moderately skeptical priors still pointed to these associations. A more plausible
causal model, justified by contextual knowledge, revealed that these associations arose from
the astrological sign association with seasonality. This case study illustrates how causal con-
siderations can guide analyses through what would otherwise be a hopeless maze of statis-
tical possibilities.
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Introduction

Much has been written about inductive, hypoth-
esis-free methods to study high-dimensional bio-
logical datasets obtained by next-generation
sequencing and multi-omics integration without
making strong assumptions about the underlying
data-generating processes (1). In the hope that
the observed data associations can reveal bio-
logical processes worth exploring further, analyses
may be performed without precise, pre-specified,
or contextually directed causal hypotheses (2).
Although this approach can sometimes be of
value (1), multiple authors have raised concerns,
because such analyses can result in spurious cor-
relations and false inferences, resulting in a lack
of reproducibility, as can be demonstrated by
genome-wide association studies (3).

The impact of hypotheses-free interrogations
of clinical datasets, such as observational regis-
tries and post-hoc subgroup analyses from
randomized clinical trials (RCTs), has received
less attention. The analytical complexity of large-

scale clinical registries, in particular, is far greater
(4,5). Real-world data (RWD) studies of this
nature have increased by more than 600% in the
last decade (6), with growing interest in using
these resources to support clinical and regulatory
decision-making (6–9).

To capture the underlying reality that leads to
observing the generated data, causal inference
calls for the introduction of multiple additional
assumptions, such as confounding relationships
between variables (10). If a refutational statistical
test detects a violation of any assumption, the
result is not attributable to a single, isolated
hypothesis and all alternative mechanisms must
be accounted for as possible competing explana-
tions (11). Accordingly, improper inferences
derived from large RWD studies are often due to
incorrect parameterizations of the models, misat-
tributions of causal links, incorrect selection of
confounders, or use of statistical models based on
implausible causal assumptions (12–15).

Categorical variables, those that can take a
fixed, limited number of possible values, are
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particularly prone to poor specification since the
analysis depends on arbitrary assumptions that
hinder the search for patterns between different
levels (e.g., categorical variables can be coded or
combined in multiple ways to reflect the desired
comparison, among other issues) (16–18). All
this amplifies model-possibility counting to an
infinitely large number of potential specifications
even from simple data (10).

Various strategies have been proposed to
reduce false signals in this scenario, due to the
enormous multiplicity of models (19). While
there is no practical consensus on this matter
(20–23) and the importance of context and costs
has been underestimated (24), the statistical lit-
erature often invokes the need to make adjust-
ments for multiple tests. Bayesian shrinkage is
another way to reduce the probability of random
fluctuations. Thus, the Bayesian approach assigns
prior probabilities that can meaningfully quantify
a priori knowledge and expectations (25,26). In
estimating causal effects, assigning skeptical prior
probabilities can be particularly useful to discour-
age results deemed implausible a priori (27). This
skeptical perspective can be formalized through
meticulously chosen priors and is a key aspect of
Bayesian modeling (24,26,28). A limitation of the
Bayesian approach is that in certain settings it
can be very hard to specify a prior probability
that is acceptable by all subject matter experts
and data analysts (29–33). Although frequentist
approaches do not quantify prior probabilities,
they too encode prior knowledge and skepticism,
for example, by using shrinkage-estimation meth-
ods to calibrate the repeated-sampling accuracy
of their estimates (34). Admittedly, skepticism
can enhance the reliability of our inferences, but
it can also impede learning, particularly in cases
of extreme skepticism. The statistician Dennis
Lindley, a strong supporter of Bayesian methods,
coined the term “Cromwell’s rule” to describe
why such extreme skepticism can be counterpro-
ductive (35). In clinical research, extreme skepti-
cism can unjustifiably favor the null hypotheses
of no difference or no effect; a prejudice known
as “nullism” (36). The fallacy of “absence of evi-
dence is not evidence of absence”, which misleads
researchers into failing to capture subtle but real
effects stand out among the consequences of

nullism (37). The complementarity of Bayesian
and frequentist procedures allows data analysts to
examine data and models in alternative ways,
detecting more sources of error and uncertainty,
thereby lessening the risk of nullism and other
biases (38,39). Bayesian and frequentist ideas can
be incorporated in multilevel (hierarchical) mod-
eling, which encompasses frequentist, Bayes,
semi-Bayes, as well as shrinkage (empirical-
Bayes) methods (24,34,40,41). However, as with
all statistical methods, multilevel modeling is sen-
sitive to the causal assumptions regarding the
underlying data-generating process (41,42).
Furthermore, while there is no single, universally
valid approach to analyzing all medical RWD
registry datasets, contextual clinical and biological
information can facilitate the interpretation of
RWD analyses.

Motivated by the above considerations, we set
out to interrogate these concepts in a real-world
setting using the gastric cancer registry
AGAMENON. Unexpectedly, we found an associ-
ation between survival outcomes and patient
zodiac signs. By considering the causal network
that may have generated this association, we were
able to arrive at a plausible explanation for this
association. Our results illustrate how rare and
surprising findings can be satisfactorily explained
through the correct specification of statistical
models structured according to causal considera-
tions informed by contextual knowledge that lies
outside of the dataset itself.

Methods

Patients

The data comes from the AGAMENON-SEOM
(SEOM is the Spanish acronym of the Sociedad
Espa~nola de Oncolog�ıa M�edica) hospital-based,
gastric cancer registry in which researchers from
37 Spanish institutions participate. Basic eligibil-
ity criteria include individuals >18 years old, with
advanced tumors of the stomach, esophagus, or
gastroesophageal junction. The database is man-
aged through a website (http://www.agame-
nonstudy.com/) designed to guarantee data
reliability and control for missing and inconsist-
ent data, with telephone and online monitoring
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(PJF). The overall characteristics of this database,
including eligibility criteria, clinical aspects, qual-
ity criteria, data monitoring, baseline patient
characteristics, and outcomes, have been previ-
ously reported (5,43–46).

Variables and study design

During an analysis of prognostic factors (5), we
decided to use negative controls, such as the sign
of the zodiac, having specified a priori that this
variable does not affect survival. Such negative
controls are used in epidemiology when the scien-
tific community generally accepts beforehand that
these variables lack any causal effect. Therefore, an
unexpected result would suggest some problem in
the data, the analytical approach, or the underly-
ing assumptions. The analysis of the prognostic
effect of the horoscope has also been used to illus-
trate various statistical pitfalls, such as the binning
of categorical variables, or the need for multiple
hypotheses to be tested, or as a source of implaus-
ible associations (47,48).

Overall survival (OS) was used as the analysis
outcome because it is considered the gold stand-
ard clinical endpoint in oncology (49). OS was
defined as the period from the beginning of the
first line of chemotherapy until death, censoring
subjects without an event at the time of analysis.
The 12 signs of the zodiac and their associated
elements (fire, earth, air, and water) were consid-
ered. Seasonality was incorporated by considering
the fraction of the year that has passed, which
results from dividing the full calendar time of
birth by 366 or 365, depending on whether the
year is a leap year or not. The secular year of
birth was used to capture long-term trends, tak-
ing as a reference the year 1921 (birth of the old-
est subject in the registry), adding the fraction of
the elapsed year in progress at the date of birth.

Statistical analyses

The evaluation of the effect of the astrological sign
on OS was carried out using the log-rank test and
the likelihood-ratio test (where H0 is a null
hypothesis; i.e., the absence of effect). We then fit-
ted several Cox proportional hazards (PH) models
to compare the effect of individual zodiac signs.

Several reference categories, or clustering criteria,
were used to exemplify the errors associated with
dichotomization based on observed results (47).
Holm-Bonferroni’s method was applied to account
for these multiple comparisons (50).

p-Values are a purely refutational metric that
represents the probability that the chosen test stat-
istic would be as or more extreme than observed
given all the assumptions used to compute it
(11,19,51). S-values are interpreted as bits of infor-
mation against the test model and are intended to
facilitate the translation of abstract statistical
results as simple physical experiments, such as
coin tossing (19,52). S-values are expressed as
negative logarithms of the p-value and, when the
base 2 is used for the logarithm, then the S-values
are measured in bits of information against the
tested hypothesis and background assumptions
(19). For example, a p-value ¼ 0.05 yields� log2
(0.05) �4.32 bits of information in the data against
the test model (hypothesis and background
assumptions), equivalent to the surprise we should
feel when tossing a presumed fair coin 4 times
and getting heads for all tosses.

Furthermore, Bayesian Cox PH models were
fitted to evaluate the influence on the likelihood
of progressively more skeptical priors �N (0, 0.1)
and �N (0, 0.05) (25,53). Finally, a rigorous ana-
lysis of seasonality was conducted, taking into
account orthogonal trigonometric functions in a
chronobiological model (54). These models are
formulated by including the following terms,
where t and T represent the calendar day and
total days of the year, while b1 and b2 are the
coefficients from which the estimated phase and
amplitude are derived:

b1 � sin
2pt
T

� �
þ b2 � cos

2pt
T

� �

The annual trends, added to the fraction of the
corresponding year to avoid abrupt leaps, were
modeled non-linearly using restricted cubic
splines. The variation inflation factor (VIF) was
used to evaluate the multicollinearity of the varia-
bles. Diagnostics of the Cox regression models
were further performed using conventional infor-
mation criteria, such as the Widely Applicable
Information Criterion (WAIC), Pseudo-BMA, or
the Leave-One-Out Cross-Validation (LOO-CV)
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applied to attain the out-of-sample predictive per-
formance (55). For frequentist models, this com-
parison was carried out using the Akaike
information criterion (AIC) and Bayesian infor-
mation criterion (BIC).

All analyses were performed with the R v4.0.3
software package, with the DescTools, survminer,
survival, and brms libraries (56,57). Directed
acyclic graphs (DAGs) were built using the
Dagitty software (http://www.dagitty.net/) (58).
The complete analysis R code used is available as
Supplementary File 1.

Results

Prognostic effect of the zodiac signs

At the time of the analysis, the AGAMENON-
SEOM database had 2473 registered patients and

2057 death events. The log-rank test revealed a sig-
nificant association between zodiac signs and OS
with v2 ¼ 23.0 on 11 degrees of freedom (df), p-
value ¼ 0.01. We subsequently fitted Cox PH mod-
els with the horoscope as a categorical variable
(Figure 1). In model 1, the category “Capricorn”
was used as a reference, because it had the highest
number of events (N¼ 203) (Figure 1). Once again,
the zodiac sign was associated with OS (Likelihood
ratio test ¼ 24.0 on 11 df, p¼ 0.01). This is equiva-
lent to �7 bits of information against the null
hypothesis and background assumptions. Note here
that these background assumptions presuppose that
the zodiac sign (expressed as a categorical variable)
is reflective of the underlying data-generating pro-
cess. The p-value and corresponding S-value cannot
on their own discern which aspects of the tested
model (null hypothesis or background

Zodiac sign

Sagittarius
(N=184)

Scorpio
(N=185)

Libra
(N=193)

Virgo
(N=236)

Leo
(N=172)

Cancer
(N=229)

Gemini
(N=218)

Taurus
(N=204)

Aries
(N=251)

Pisces
(N=220)

Aquarius
(N=224)

Capricorn
(N=254) Reference

0.76
(0.61 − 0.94)

0.94
(0.76 − 1.16)

0.94
(0.76 − 1.15)

1.02
(0.84 − 1.24)

1.17
(0.95 − 1.46)

0.93
(0.76 − 1.13)

1.10
(0.90 − 1.35)

0.89
(0.72 − 1.09)

0.86
(0.70 − 1.05)

1.00
(0.82 − 1.22)

1.06
(0.87 − 1.30)

0.011 *

0.553

0.529

0.834

0.144

0.448

0.333

0.264

0.133

0.984

0.547

# Events: 2057; Global p−value (Log−Rank): 0.012563
AIC: 28339.64; BIC 28401.56; Concordance Index: 0.52

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Hazard ratio (95% confidence interval)

Figure 1. Cox proportional hazards model for overall survival. The model has been parameterized here considering the zodiac as a
categorical variable. Capricorn subjects have been considered as the reference since they constitute the group containing the most
individuals and events. AIC: Akaike information criterion; BIC: Bayesian information criterion.
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assumptions) are refuted by the data. According to
the specification of this model 1, participants born
under the sign of Sagittarius had a better prognosis,
with an OS hazard ratio (HR) of 0.76 (95% confi-
dence interval [CI], 0.61–0.94), p-value ¼ 0.011.

Model-possibility counting and multiple
comparisons

Model 1 is one of the thousands of possible spec-
ifications. As they are combinations without
replacement, the number of pairwise comparisons
(Wald tests) between the 12 elements of the
zodiac (e.g., Capricorn vs. Sagittarius) is:

12
2

� �
¼ 66

Given that the choice between them is arbi-
trary, the validity of multiplicity adjustment is

equally valid for any of these specifications.
Applying the binomial formula, the probability of
reaching a false conclusion in any of them is
96.7%:

1� 66
0

� �
0:050ð Þ 0:9566�0ð Þ

For example, if Sagittarius is considered the
reference category (model 2), then six of the
zodiac signs have a worse prognosis (p< 0.05)
(Figure 2). After adjusting for multiple compari-
sons, both Gemini and Leo were still associated
with worse outcomes (p< 0.05). Model-possibility
counting scales up quickly when considering
more complex models. The number of ways a set
with N elements can be partitioned into disjoint,
non-empty subsets is described by the nth Bell
number minus one; therefore the zodiac sign can
be partitioned in 4,213,596 ways, each one

Zodiac sign

Scorpio
(N=185)

Libra
(N=193)

Virgo
(N=236)

Leo
(N=172)

Cancer
(N=229)

Gemini
(N=218)

Taurus
(N=204)

Aries
(N=251)

Pisces
(N=220)

Aquarius
(N=224)

Capricorn
(N=254)

Sagittarius
(N=184) reference

1.2
(0.98 − 1.6)

1.2
(0.98 − 1.5)

1.3
(1.08 − 1.7)

1.6
(1.23 − 2.0)

1.2
(0.98 − 1.5)

1.5
(1.17 − 1.8)

1.2
(0.93 − 1.5)

1.1
(0.91 − 1.4)

1.3
(1.06 − 1.6)

1.4
(1.13 − 1.7)

1.3
(1.07 − 1.6)

0.071

0.068

0.007 **

<0.001 ***

0.072

<0.001 ***

0.168

0.26

0.014 *

0.002 **

0.011 *

# Events: 2057; Global p−value (Log−Rank): 0.012563
AIC: 28339.64; BIC 28401.56; Concordance Index: 0.52

1 1.2 1.4 1.6 1.8 2

Hazard ratio (95% confidence interval)

Figure 2. Cox proportional hazards model for overall survival. On this occasion, the Sagittarius subjects are the reference. The deci-
sion was made based on the observed results of model 1. The reader can appreciate that the consequence of this decision is that
multiple categories are significantly associated with survival.
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representing a different model (59). In one of
these models, Sagittarians have a higher median
OS than all others combined (13.4 vs.
10.5months), with HR 0.79 (95% CI, 0.61–0.93),
p-value ¼ 0.011, corresponding �7 bits of refuta-
tional information (Figure 1). All these considera-
tions are similar when the parameterization is
performed with the Gregorian calendar (data
not shown).

Skeptical Bayesian approach

To further interrogate the unexpected association
of OS with a patient zodiac sign, we fitted
Bayesian versions of these Cox PH models. In
model 3, a moderately skeptical prior �N (0,0.1)
with Capricorn as reference category was used.
Even under this skeptical model, Sagittarians

demonstrated a better prognosis with HR 0.87
(95% credible interval [CrI], 0.78–0.97), which
represents a posterior probability of favorable
effect of 98%. Model 4 uses a more skeptical
prior �N (0, 0.05), but this time with Sagittarian
patients as the reference category. With this
highly skeptical model, none of the other zodiac
elements demonstrated a substantially worse OS
compared with Sagittarians (Figure 3). For
example, Leos demonstrated an HR of 1.05 (95%
CrI, 0.96–1.13), with a posterior probability of
effect size >0 of �60% compared with
Sagittarians.

Chronobiological model

We decided to use context-derived causal consid-
erations to narrow our statistical considerations

Virgo

Taurus

Scorpio  

Pisces  

Libra  

Leo  

Gemini

Capricorn  

Cancer  

Aries  

Aquarius

0.9 1.1 1.21.0

Hazard ratio (66%, 95% HPDI)

Figure 3. Half-eye plot with the (Bayesian) Cox proportional hazards model with a skeptical prior. The Sagittarians constitute the
reference group. The skeptical prior, normal (0, 0.05), conditions the posterior distribution of effect, discouraging implausible
results, but ultimately prevents learning.
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based on plausible models of the underlying real-
ity. We accordingly generated a DAG to guide
further analyses of our dataset (Figure 4). The
DAG is based on the hypothesis that seasonal
mechanisms, such as sunlight exposure, gesta-
tional nutrition, and infections, can affect OS and
are reflected in the astrological month of birth
(60). Furthermore, we assumed that birth year
can also affect seasonality (for example, modern
infection controls and food distribution can flat-
ten seasonal effects), in addition to its association
with zodiac signs and overall survival. The DAG
suggested that seasonality and birth year are con-
founders of the association between zodiac signs
and OS. A frequentist Cox PH model was
accordingly built that adjusted for both the sea-
sonality of the date of birth and the year of birth
(model 5). Under this simple model, none of the
zodiac signs was significantly associated with OS.
However, model diagnosis revealed high multi-
collinearity for the coefficients associated with
seasonality (correlation with the horoscope). To
mitigate this effect, the astrological signs were
gathered into their four basic elements (model 6)
as described in the Methods section. This proced-
ure drastically reduced the multiplicity of models.
The final result does not refute the null

hypothesis that the zodiac sign does not inde-
pendently influence prognosis (Likelihood
test¼ v2¼ 1.028, on 3 df, p-value ¼ 0.794), corre-
sponding to �0 bits of refutational information
(see Figure 5). The model diagnostics are shown
in Supplementary Figure 1. No multicollinearity,
influential observations (data points whose dele-
tion would noticeably change the result of the
estimate), outliers, or violation of the PH
assumption were observed for any of the covari-
ates. When comparing out-of-sample perform-
ance, the chronobiological model 6 is superior to
the naïve model 1, according to the BIC
(28391.11 vs. 28401.56, respectively), but not
according to the AIC (28351.71 vs. 28339.64). We
next fitted the Bayesian counterpart of the chro-
nobiological model using a normal (0,1) prior.
The estimates are comparable to the Cox fre-
quentist model (data not shown). Data-based
diagnostics, such as LOO-CV (0.003 vs. 0.996),
WAIC (0.003 vs. 0.996), and Pseudo-BMA
weighting (0.23 vs. 0.77) suggested that the chro-
nobiological model did not represent the data-
generating process more plausibly.

Discussion

In the present study, we used multiple different
approaches to investigate a surprising result that
arose during the survival analysis of a real-world
cancer registry. Our initial statistical model sug-
gested an association between patient zodiac signs
and cancer prognosis as measured by OS. Causal
considerations, based on contextual knowledge
outside the dataset itself, provided a plausible
chronobiological explanation of this association.
The resultant chronobiological model suggested
that both seasonality and birth year were con-
founders for the association between zodiac signs
and OS. Adjustment for both these confounders
negated the effect of zodiac signs on OS in our
patient cohort.

The initially surprising association was due to
the erroneous translation of an implausible causal
construct into our statistical models, which
ignored that the horoscope (or the month of the
year) represents the effect of continuous calendar
time on OS (61,62). Discretization of continuous
data by the horoscope yielded arbitrary statistical

Figure 4. Directed acyclic graph of the chronobiological causal
model used to investigate the relationship between zodiac
sign elements (exposure) and overall survival (outcome) in our
dataset. Seasonality is associated with the zodiac sign elements
at birth and can affect overall survival through multiple plaus-
ible mechanisms, such as gestational nutrition, seasonal infec-
tions, and sunlight exposure. A birth year can influence
seasonality mechanisms (e.g., seasonal effects can be attenu-
ated by modern infection controls and food distribution) as
well as overall survival. Seasonality and birth year are con-
founders that must be accounted for to determine the true
causal effect of the zodiac sign on overall survival.

CANCER INVESTIGATION 7

https://doi.org/10.1080/07357907.2021.1999971


models that ignored the fundamental mechanism
of seasonality. Even when focused solely on the
zodiac sign, the potential possible models are up
to 4,213,596. However, the true estimate of
potential analyses is unquantifiable. This problem
is accentuated even further with continuously
modeled data. For instance, if birth days were
used instead of birth months, the number of
imaginable models would make 4,213,596 seem
miniscule. This hopeless maze of equally valid
alternatives cannot be navigated with hypothesis-
free approaches that are unable to select plausible
models from the innumerable possible alterna-
tives (10). The first important step is to accept
that the overwhelming majority of logically pos-
sible partitions and parameterizations would be

immediately rejected as complex beyond any
practical or empirical justification. Thus, parsi-
mony heuristics allow us to narrow our models
down to a smaller, finite collection, although this
still fails to fully resolve the issue (63). For
example, approaches attempting to naively sim-
plify models, e.g., by dichotomizing k levels into
a 2� 2 table, do not fully resolve the exuberant
proliferation of models and further compromise
the analysis by introducing arbitrary discontinu-
ities, especially if dichotomization is performed
based on “conveniently” observed results (17,61).

Controlling family-wise error rates introduces
additional dilemmas, such as the need to define
what is considered a family of tests, and increases
the probability of type II errors (64). In an

Year '

Year

cos(2 * p * day)

sin(2 * p * day)

Elements

(N=2570)

(N=2570)

(N=2570)

(N=2570)

Water
(N=634)

Fire
(N=831)

Earth
(N=694)

Air
(N=411) Reference

1.01
(1.00 − 1.0)

0.99
(0.98 − 1.0)

0.97
(0.91 − 1.0)

1.01
(0.94 − 1.1)

0.94
(0.82 − 1.1)

0.93
(0.81 − 1.1)

0.96
(0.84 − 1.1)

0.207

0.172

0.442

0.863

0.419

0.335

0.591

# Events: 2057; Global p−value (Log−Rank): 0.78325
AIC: 28351.71; BIC 28391.11; Concordance Index: 0.51

0.8 0.85 0.9 0.95 1 1.05 1.1

Hazard ratio (95% confidence interval)

Figure 5. Chronobiological model. Calendar time is captured by orthogonal trigonometric functions (sine and cosine). To avoid
multicollinearity, the zodiac is expressed through its elements (see Methods).
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extreme case, adjustments would be needed for
comparisons that the analyst has not even consid-
ered carrying out (24). Had we casually rejected
the association between OS and the zodiac sign
as a random “fluke”, we would have missed a
potentially interesting hypothesis-generating sig-
nal connecting OS with seasonality. Multiplicity
considerations should factor in the cost of missed
discoveries relative to false discoveries (65).

The Bayesian approach shares the same need
for appropriate specification of analyses models
(24,38). Bayesian analyses can compute the prob-
ability of hypotheses as a function of the data
and allow the incorporation of prior knowledge
through plausible prior probability distributions
(25,26,28). However, the use of strongly skeptical
priors, such as spiked priors focusing on the null
effect, presupposes that we have very strong prior
evidence that seasonality in no way affects OS in
patients with advanced gastric cancer. Taken to
the extreme, such “nullism” hinders the acquisi-
tion of evidence from the data (38). Some of the
most successful scientific strategies have been
inspired by investigating anomalies (e.g., outliers
or unexpected observations for theory), as pro-
posed by philosophers of science, such as Popper,
Kuhn, and Lakatos (66–69). Therefore, strongly
skeptical priors, while they may be useful in cer-
tain contexts (3), do not substitute for the need
to properly parametrize our statistical models
based on plausible causal frameworks.

Researchers may be tempted to carelessly per-
form statistical analyses based on limited ration-
ale without taking advantage of the contextually
rich background information available within the
scientific community (38). Moreover, research
objectives may be arbitrarily changed, hypotheses
modified to adapt to observed results, subgroups
modeled without having contextually-rich or reli-
able data, and post-hoc analyses may be misinter-
preted (70) leading to the proliferation of
implausible models and conclusions (71). In this
case study, the 7 bits of refutational information
we initially found alerted us to a problem in our
background assumptions and warned us of the
lack of causal context in our analysis (11,72).
Some of what we today treat as pure superstition
had its origin in observations accrued over many
generations. Vague astrological notions were not

outlandish at a time when seasonal effects were
likely far more profound than in modern genera-
tions. The contemporary null spike on astro-
logical effects is a product of precise astrometry
that emerged from our modern era. On the other
hand, an association between seasonality and sur-
vival outcomes has recently been suggested for
pediatric tumors (73) and other pathologies
(74–76), and adjusting for seasonality is therefore
a sound strategy. More generally, the initial unex-
pected association between the zodiac sign and
survival is an example of a problem enunciated
by the theoretical physicist and philosopher of
science Pierre Duhem more than 100 years ago:
the impossibility of evaluating a hypothesis in
isolation without causal models that require
assumptions or auxiliary hypotheses (42,77).
These challenges are usually more prominent in
explanatory analyses of large datasets (78).

There can be causally incorrect models that
make better predictions than causally correct
ones (79). Hence, measures of model fit may not
on their own be helpful in selecting the best
causal model. Thus, the conventional information
criteria, such as AIC, BIC, WAIC, or the LOO-
CV procedure, do not supplant the theoretical
justification of our statistical models. Such com-
plex causal relationships can be represented by
DAGs, which help visualize causal relationships
between variables based on plausible and prefer-
ably a priori specified causal models that are
external to the data (12,15). In our case, neither
AIC nor WAIC was capable of identifying the
most causally correct model. In contrast, the BIC
suggested the best explanatory model that
accounted for seasonality and birth year. This is
consistent with the notion that, whereas the AIC
is suitable for prediction because it is asymptotic-
ally equivalent to cross-validation, the BIC is
more appropriate for selecting causal models
because it attempts to estimate the underlying
data-generating process (80). This illustrates how
prediction and explanation are fundamentally dif-
ferent processes, although they are often crudely
interchanged (78,81).

In conclusion, this case study illustrates the
importance of using carefully developed statistical
analysis models, supported by plausible back-
ground assumptions derived from contextual
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knowledge outside of the dataset itself. Our ana-
lysis warns against the indiscriminate use of pri-
ors focused on the null effect and of measures of
goodness-of-fit, which cannot substitute for
sound causal reasoning. When faced with unex-
pected results, all statistical analysis steps should
be carefully and transparently audited in light of
the available knowledge.
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